Air Flow Bench - Flow Bench Data

Flow Bench Data

The air flow bench can give a wealth of data about the characteristics of a cylinder head or whatever part is tested. The result of main interest is bulk flow. It is the volume of air that flows through the port in a given time. Expressed in cubic feet per minute or cubic meters per second/minute.

Valve lift can be expressed as an actual dimension in decimal inches or mm. It can also be specified as a ratio between a characteristic diameter and the lift L/D. Most often used is the valve head diameter. Normally engines have an L/D ratio from 0 up to a maximum of .35. For example, a 1-inch-diameter (25 mm) valve would be lifted a maximum of 0.350 inch. During flow testing the valve would be set at L/D .05 .1 .15 .2 .25 .3 and readings taken successively. This allows the comparison of efficiencies of ports with other valve sizes, as the valve lift is proportional rather than absolute. For comparison with tests by others the characteristic diameter used to determine lift must be the same.

Flow coefficients are determined by comparing the actual flow of a test piece to the theoretical flow of a perfect orifice of equal area. Thus the flow coefficient should be a close measure of efficiency. It cannot be exact because the L/D does not indicate the actual minimum size of the duct.

An orifice with a flow coefficient of .59 would flow the same amount of fluid as a perfect orifice with 59% of its area or 59% of the flow of a perfect orifice with the same area (orifice plates of the type shown would have a coefficient of between .58 and .62 depending on the precise details of construction and the surrounding installation).

Valve/port coefficient is non dimensional and is derived by multiplying a characteristic physical area of the port and by the bulk flow figures and comparing the result to an ideal orifice of the same area. It is here that air flow bench norms differ from fluid dynamics or aerodynamics at large. The coefficient may be based on the inner valve seat diameter, the outer valve head diameter, the port throat area or the valve open curtain area. Each of these methods are valid for some purpose but none of them represents the true minimum area for the valve/port in question and each results in a different flow coefficient. The great difficulty of measuring the actual minimum area at all the various valve lifts precludes using this as a characteristic measurement. This is due to the minimum area changing shape and location throughout the lift cycle. Because of this non standardization, port flow coefficients are not "true" flow coefficients, which would be based on the actual minimum area in the flow path. Which method to choose depends on what use is intended for the data. Engine simulation applications each require their own specification. If the result is to be compared to the work of others then the same method would have to be selected.

Using extra instrumentation (manometers and probes) the detailed flow through the port can be mapped by measuring multiple points within the port with probes. Using these tools, the velocity profile throughout the port can be mapped which gives insight into what the port is doing and what might be done to improve it.

Of less interest is mass flow per minute or second since the test is not of a running engine which would be affected by it. It is the weight of air that flows through the port in a given time. Expressed in pounds per minute/hour or kilograms per second/minute. Mass flow is derived from the volume flow result to which a density correction is applied.

With the information gathered on the flow bench, engine power curve and system dynamics can be roughly estimated by applying various formulae. With the advent of accurate engine simulation software, however, it is much more useful to use flow data to create an engine model for a simulator.

Determining air velocity is a useful part of flow testing. It is calculated as follows:

For one set of English units

Where:

V = Velocity in feet per minute
H = Pressure drop across test piece in inches of water measured by the test pressure manometer
d = density of air in pounds per cubic foot (0.075 pound per cubic foot at standard conditions)

For SI units

Where:

V = Velocity in meters per second
H = Pressure drop across test piece in pascals measured by the test pressure manometer
d = density of air in kilograms per cubic meter (1.20 kilograms per cubic meter at standard conditions)

This represents the highest speed of the air in the flow path, at or near the section of minimum area (through the valve seat at low values of L/D for instance).

Once velocity has been calculated, the volume can be calculated by multiplying the velocity by the orifice area times its flow coefficient.

Read more about this topic:  Air Flow Bench

Famous quotes containing the words flow and/or data:

    Logic and fact keep interfering with the easy flow of conversation.
    Mason Cooley (b. 1927)

    Mental health data from the 1950’s on middle-aged women showed them to be a particularly distressed group, vulnerable to depression and feelings of uselessness. This isn’t surprising. If society tells you that your main role is to be attractive to men and you are getting crow’s feet, and to be a mother to children and yours are leaving home, no wonder you are distressed.
    Grace Baruch (20th century)