Affine Geometry of Curves - Discrete Invariant

Discrete Invariant

The normalization of the curve parameter s was selected above so that

If n≡0 (mod 4) or n≡3 (mod 4) then the sign of this determinant is a discrete invariant of the curve. A curve is called dextrorse (right winding, frequently weinwendig in German) if it is +1, and sinistrorse (left winding, frequently hopfenwendig in German) if it is −1.

In three-dimensions, a right-handed helix is dextrorse, and a left-handed helix is sinistrorse.

Read more about this topic:  Affine Geometry Of Curves

Famous quotes containing the word discrete:

    One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.
    Joshua Meyrowitz, U.S. educator, media critic. “The Blurring of Public and Private Behaviors,” No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)