Derivation of Panel Method Solution To Potential Flow Problem
- From Small Disturbances
- (subsonic)
- From Divergence Theorem
- Let Velocity U be a twice continuously differentiable function in a region of volume V in space. This function is the stream function .
- Let P be a point in the volume V
- Let S be the surface boundary of the volume V.
- Let Q be a point on the surface S, and .
As Q goes from inside V to the surface of V,
- Therefore:
For :, where the surface normal points inwards.
This equation can be broken down into the a both a source term and a doublet term.
The Source Strength at an arbitrary point Q is:
The Doublet Strength at an arbitrary point Q is:
The simplified potential flow equation is:
With this equation, along with applicable boundary conditions, the potential flow problem may be solved.
Read more about this topic: Aerodynamic Potential Flow Code
Famous quotes containing the words method, solution, potential, flow and/or problem:
“You know, I have a method all my own. If youll notice, the coat came first, then the tie, then the shirt. Now, according to Hoyle, after that the pants should be next. Theres where Im different. I go for the shoes next. First the right, then the left. After that, its every man for himself.”
—Robert Riskin (18971955)
“The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...”
—Jane Addams (18601935)
“Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of ones own cherished beliefs.”
—Gore Vidal (b. 1925)
“Water doesnt flow if its level, and people wont complain if you treat them on the level.”
—Chinese proverb.
“To make a good salad is to be a brilliant diplomatistthe problem is entirely the same in both cases. To know exactly how much oil one must put with ones vinegar.”
—Oscar Wilde (18541900)