Aerobic Granulation - Formation of Aerobic Granules

Formation of Aerobic Granules

Granular sludge biomass is developed in sequencing batch reactors (SBR) and without carrier materials. These systems fulfil most of the requirements for their formation as:

Feast - Famine regime: short feeding periods must be selected to create feast and famine periods (Beun et al. 1999), characterized by the presence or absence of organic matter in the liquid media, respectively. With this feeding strategy the selection of the appropriate micro-organisms to form granules is achieved. When the substrate concentration in the bulk liquid is high, the granule-former organisms can store the organic matter in form of poly-β-hydroxybutyrate to be consumed in the famine period, giving an advantage over filamentous organisms.
Short settling time: This hydraulic selection pressure on the microbial community allows the retention granular biomass inside the reactor while flocculent biomass is washed-out. (Qin et al. 2004)
Hydrodynamic shear force : Evidences show that the application of high shear forces favours the formation of aerobic granules and the physical granule integrity. It was found that aerobic granules could be formed only above a threshold shear force value in terms of superficial upflow air velocity above 1.2 cm/s in a column SBR, and more regular, rounder, and more compact aerobic granules were developed at high hydrodynamic shear forces (Tay et al., 2001 ).

Read more about this topic:  Aerobic Granulation

Famous quotes containing the words formation of and/or formation:

    That for which Paul lived and died so gloriously; that for which Jesus gave himself to be crucified; the end that animated the thousand martyrs and heroes who have followed his steps, was to redeem us from a formal religion, and teach us to seek our well-being in the formation of the soul.
    Ralph Waldo Emerson (1803–1882)

    It is because the body is a machine that education is possible. Education is the formation of habits, a superinducing of an artificial organisation upon the natural organisation of the body.
    Thomas Henry Huxley (1825–1895)