Mutual Information of Two Partitions
Given a set S of N elements, consider two partitions of S, namely with R clusters, and with C clusters. It is presumed here that the partitions are so-called hard clusters, the partitions are pairwise disjoint:
for all, and complete:
The mutual information of cluster overlap between U and V can be summarized in the form of an RxC contingency table, where denotes the number of objects that are common to clusters and . That is,
Suppose an object is picked at random from S; the probability that the object falls into cluster is:
The entropy associated with the partitioning U is:
H(U) is non-negative and takes the value 0 only when there is no uncertainty determining an object's cluster membership, i.e., when there is only one cluster. Similarly, the entropy of the clustering V can be calculated as:
where . The mutual information (MI) between two partitions:
where P(i,j) denotes the probability that a point belongs to both the cluster in U and cluster in V:
MI is a non-negative quantity upper bounded by the entropies H(U) and H(V). It quantifies the information shared by the two clusterings and thus can be employed as a clustering similarity measure.
Read more about this topic: Adjusted Mutual Information
Famous quotes containing the words mutual, information and/or partitions:
“Of course I lie to people. But I lie altruisticallyfor our mutual good. The lie is the basic building block of good manners. That may seem mildly shocking to a moralistbut then what isnt?”
—Quentin Crisp (b. 1908)
“If you have any information or evidence regarding the O.J. Simpson case, press 2 now. If you are an expert in fields relating to the O.J. Simpson case and would like to offer your services, press 3 now. If you would like the address where you can send a letter of support to O.J. Simpson, press 1 now. If you are seeking legal representation from the law offices of Robert L. Shapiro, press 4 now.”
—Advertisement. Aired August 8, 1994 by Tom Snyder on TV station CNBC. Chicago Sun Times, p. 11 (July 24, 1994)
“Great wits are sure to madness near allied,
And thin partitions do their bounds divide.”
—John Dryden (16311700)