Adding Machine - Operation

Operation

To add a new list of numbers and arrive at a total, the user was first required to "Zero" the machine. Then, to add sets of numbers, the user was required to press numbered keys on a keyboard, which would remain depressed (rather than immediately rebound like the keys of a computer keyboard or typewritter or the buttons of a typical modern machine). The user would then pull the crank, which caused the numbers to be shown on the rotary wheels, and the keys to be released (i.e. to pop back up) in preparation for the next input. To add, for example, the amounts of 30.72 and 4.00 (which, in adding machine terms, on a decimal adding machine is 3,072 plus 400 "decimal units"), the following process took place: Press the 3 key in the column fourth from the right (multiples of one thousand), the 7 key in the column 2nd from right (multiples of ten) and the 2 key in the right hand (multiples of 1). Pull the crank. The rotary wheels now showed 3072. Press the 4 key in the 3rd column from the right. Pull the crank. The rotary wheels now show a running 'total' of 3472 which, when interpreted using the decimal currency colour coding of the key columns, equates to 34.72. Keyboards typically did not have or need "0" (zero) keys. Trailing zeros (those to the right of a number such as the one to the right of the 3 in the example), were there by default because when a machine was zeroed, all numbers visible on the rotary wheels were reset to zero.

Subtraction was impossible, except by adding the complement of a number (for instance, subtract 2.50 by adding 9,997.50).

Multiplication was a simple process of keying in the numbers one or more columns to the left and repeating the "addition" process. For example, to multiply 34.72 by 102, key in 3472, pull crank, repeat once more. Wheels show 6944. Key in 3472(00), pull crank. Wheels now show 354144, or 3,541.44

A later adding machine, called the comptometer, did not require that a crank be pulled to add. Numbers were input simply by pressing keys. The machine was thus driven by finger power. Multiplication was similar to that on the adding machine, but users would "form" up their fingers over the keys to be pressed and press them down the multiple of times required. Using the above example, four fingers would be used to press down twice on the 3 (fourth column), 4 (third column), 7(second column) and 2 (first column) keys. That finger shape would then move left two columns and press once. Usually a small crank near the wheels would be used to zero them.

Some adding machines were electromechanical — an old-style mechanism, but driven by electric power.

Some "ten-key" machines had input of numbers as on a modern calculator – 30.72 was input as "3", "0", "7", "2". These machines could subtract as well as add. Some could multiply and divide, although including these operations made the machine more complex. Those that could multiply, used a form of the old adding machine multiplication method. Using the previous example of multiplying 34.72 by 102, the amount was keyed in, then the 2 key in the "multiplication" key column was pressed. The machine cycled twice, then tabulated the adding mechanism below the keyboard one column to the right. The number keys remained locked down on the keyboard. The user now pressed the multiplication "0" key which caused tabulation of the adding mechanism one more column to the right, but did not cycle the machine. Now the user pressed the multiplication "1" key. The machine cycled once. To see the total the user was required to press a "Total" key and the machine would print the result on a paper tape, release the locked down keys, reset the adding mechanism to zero and tabulate it back to its home position.

Modern adding machines are like simple calculators. They often have a different input system, though.

To figure out this: Type this on the adding machine:
2+17+5=? 2 + 17 + 5 + T
19-7=? 19 + 7 - T
38-24+10=? 38 + 24 - 10 + T
7×6=? 7 × 6 =
18/3=? 18 ÷ 3 =10
(1.99×3)+(.79×8)+(4.29×6)=? 1.99 × 3 = + .79 × 8 = + 4.29 × 6 = + T
Note: Sometimes the adding machine will have a key labeled * instead of T. In this case, substitute * for T in the examples above. Alternatively, the plus key may continuously total instead of either a * or T key. Sometimes, the plus key is even labeled thus: +/=

Read more about this topic:  Adding Machine

Famous quotes containing the word operation:

    An absolute can only be given in an intuition, while all the rest has to do with analysis. We call intuition here the sympathy by which one is transported into the interior of an object in order to coincide with what there is unique and consequently inexpressible in it. Analysis, on the contrary, is the operation which reduces the object to elements already known.
    Henri Bergson (1859–1941)

    It requires a surgical operation to get a joke well into a Scotch understanding. The only idea of wit, or rather that inferior variety of the electric talent which prevails occasionally in the North, and which, under the name of “Wut,” is so infinitely distressing to people of good taste, is laughing immoderately at stated intervals.
    Sydney Smith (1771–1845)

    You may read any quantity of books, and you may almost as ignorant as you were at starting, if you don’t have, at the back of your minds, the change for words in definite images which can only be acquired through the operation of your observing faculties on the phenomena of nature.
    Thomas Henry Huxley (1825–95)