General Scheme
Adaptive quadrature follows the general scheme
1. procedure integrate ( f, a, b, tau ) 2. 3. 4. if then 5. m = (a + b) / 2 6. Q = integrate(f,a,m,tau/2) + integrate(f,m,b,tau/2) 7. endif 8. return QAn approximation to the integral of over the interval is computed (line 2), as well as an error estimate (line 3). If the estimated error is larger than the required tolerance (line 4), the interval is subdivided (line 5) and the quadrature is applied on both halves separately (line 6). Either the initial estimate or the sum of the recursively computed halves is returned (line 7).
The important components are the quadrature rule itself
the error estimator
and the logic for deciding which interval to subdivide, and when to terminate.
There are, of course, several variants of this scheme. The most common will be discussed later.
Read more about this topic: Adaptive Quadrature
Famous quotes containing the words general and/or scheme:
“The general Mistake among us in the Educating of our Children, is, That in our Daughters we take Care of their Persons and neglect their Minds; in our Sons, we are so intent upon adorning their Minds, that we wholly neglect their Bodies.”
—Richard Steele (16721729)
“We doubt not the destiny of our countrythat she is to accomplish great things for human nature, and be the mother of a nobler race than the world has yet known. But she has been so false to the scheme made out at her nativity, that it is now hard to say which way that destiny points.”
—Margaret Fuller (18101850)