Absolute Continuity - Relation Between The Two Notions of Absolute Continuity

Relation Between The Two Notions of Absolute Continuity

A finite measure μ on Borel subsets of the real line is absolutely continuous with respect to Lebesgue measure if and only if the point function

is locally an absolutely continuous real function. In other words, a function is locally absolutely continuous if and only if its distributional derivative is a measure that is absolutely continuous with respect to the Lebesgue measure.

If the absolute continuity holds then the Radon-Nikodym derivative of μ is equal almost everywhere to the derivative of F.

More generally, the measure μ is assumed to be locally finite (rather than finite) and F(x) is defined as μ((0,x]) for x>0, 0 for x=0, and -μ((x,0]) for x<0. In this case μ is the Lebesgue-Stieltjes measure generated by F. The relation between the two notions of absolute continuity still holds.

Read more about this topic:  Absolute Continuity

Famous quotes containing the words relation between, relation, notions, absolute and/or continuity:

    There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.
    Blaise Pascal (1623–1662)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)

    Hang ideas! They are tramps, vagabonds, knocking at the back- door of your mind, each taking a little of your substance, each carrying away some crumb of that belief in a few simple notions you must cling to if you want to live decently and would like to die easy!
    Joseph Conrad (1857–1924)

    I learned early to understand that there is no such condition in human affairs as absolute truth. There is only truth as people see it, and truth, even in fact, may be kaleidoscopic in its variety. The damage such perception did to me I have felt ever since ... I could never belong entirely to one side of any question.
    Pearl S. Buck (1892–1973)

    Only the family, society’s smallest unit, can change and yet maintain enough continuity to rear children who will not be “strangers in a strange land,” who will be rooted firmly enough to grow and adapt.
    Salvador Minuchin (20th century)