Relation Between The Two Notions of Absolute Continuity
A finite measure μ on Borel subsets of the real line is absolutely continuous with respect to Lebesgue measure if and only if the point function
is locally an absolutely continuous real function. In other words, a function is locally absolutely continuous if and only if its distributional derivative is a measure that is absolutely continuous with respect to the Lebesgue measure.
If the absolute continuity holds then the Radon-Nikodym derivative of μ is equal almost everywhere to the derivative of F.
More generally, the measure μ is assumed to be locally finite (rather than finite) and F(x) is defined as μ((0,x]) for x>0, 0 for x=0, and -μ((x,0]) for x<0. In this case μ is the Lebesgue-Stieltjes measure generated by F. The relation between the two notions of absolute continuity still holds.
Read more about this topic: Absolute Continuity
Famous quotes containing the words relation, notions, absolute and/or continuity:
“The adolescent does not develop her identity and individuality by moving outside her family. She is not triggered by some magic unconscious dynamic whereby she rejects her family in favour of her peers or of a larger society.... She continues to develop in relation to her parents. Her mother continues to have more influence over her than either her father or her friends.”
—Terri Apter (20th century)
“Your notions of friendship are new to me; I believe every man is born with his quantum, and he cannot give to one without robbing another. I very well know to whom I would give the first place in my friendship, but they are not in the way, I am condemned to another scene, and therefore I distribute it in pennyworths to those about me, and who displease me least, and should do the same to my fellow prisoners if I were condemned to a jail.”
—Jonathan Swift (16671745)
“There is no absolute point of view from which real and ideal can be finally separated and labelled.”
—T.S. (Thomas Stearns)
“The dialectic between change and continuity is a painful but deeply instructive one, in personal life as in the life of a people. To see the light too often has meant rejecting the treasures found in darkness.”
—Adrienne Rich (b. 1929)