Abrasive - Mechanics of Abrasion

Mechanics of Abrasion

Abrasives generally rely upon a difference in hardness between the abrasive and the material being worked upon, the abrasive being the harder of the two substances. However, this is not necessary as any two solid materials that repeatedly rub against each other will tend to wear each other away (such as softer shoe soles wearing away wooden or stone steps over decades or centuries or glaciers abrading stone valleys).

Typically, materials used as abrasives are either hard minerals (rated at 7 or above on Mohs scale of mineral hardness) or are synthetic stones, some of which may be chemically and physically identical to naturally occurring minerals but which cannot be called minerals as they did not arise naturally. (While useful for comparative purposes, the Mohs scale is of limited value to materials engineers as it is an arbitrary, ordinal, irregular scale.) Diamond, a common abrasive, for instance occurs both naturally and is industrially produced, as is corundum which occurs naturally but which is nowadays more commonly manufactured from bauxite. However, even softer minerals like calcium carbonate are used as abrasives, such as "polishing agents" in toothpaste.

These minerals are either crushed or are already of a sufficiently small size (anywhere from macroscopic grains as large as about 2 mm to microscopic grains about 0.001 mm in diameter) to permit their use as an abrasive. These grains, commonly called grit, have rough edges, often terminating in points which will decrease the surface area in contact and increase the localised contact pressure. The abrasive and the material to be worked are brought into contact while in relative motion to each other. Force applied through the grains causes fragments of the worked material to break away while simultaneously smoothing the abrasive grain and/or causing the grain to work loose from the rest of the abrasive.

Some factors which will affect how quickly a substance is abraded include:

  • Difference in hardness between the two substances: a much harder abrasive will cut faster and deeper
  • Grain size (grit size): larger grains will cut faster as they also cut deeper
  • Adhesion between grains, between grains and backing, between grains and matrix: determines how quickly grains are lost from the abrasive and how soon fresh grains, if present, are exposed
  • Contact force: more force will cause faster abrasion
  • Loading: worn abrasive and cast off work material tends to fill spaces between abrasive grains so reducing cutting efficiency while increasing friction
  • Use of lubricant/coolant/metalworking fluid: Can carry away swarf (preventing loading), transport heat (which may affect the physical properties of the workpiece or the abrasive), decrease friction (with the substrate or matrix), suspend worn work material and abrasives allowing for a finer finish, conduct stress to the workpiece.

Read more about this topic:  Abrasive

Famous quotes containing the words mechanics of and/or mechanics:

    It is only the impossible that is possible for God. He has given over the possible to the mechanics of matter and the autonomy of his creatures.
    Simone Weil (1909–1943)

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)