In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.
The prototypical example of an abelian von Neumann algebra is the algebra L∞(X, μ) for μ a σ-finite measure on X realized as an algebra of operators on the Hilbert space L2(X, μ) as follows: Each f ∈ L∞(X, μ) is identified with the multiplication operator
Of particular importance are the abelian von Neumann algebras on separable Hilbert spaces, particularly since they are completely classifiable by simple invariants.
Though there is a theory for von Neumann algebras on non-separable Hilbert spaces (and indeed much of the general theory still holds in that case) the theory is considerably simpler for algebras on separable spaces and most applications to other areas of mathematics or physics only use separable Hilbert spaces. Note that if the measure spaces (X, μ) is a standard measure space (that is X − N is a standard Borel space for some null set N and μ is a σ-finite measure) then L2(X, μ) is separable.
Read more about Abelian Von Neumann Algebra: Classification, Spatial Isomorphism, Point and Spatial Realization of Automorphisms
Famous quotes containing the words von, neumann and/or algebra:
“For usually people resist as long as they can to dismiss the fool they harbor in their bosom, they resist to confess a major mistake or to admit a truth that makes them despair.”
—Johann Wolfgang Von Goethe (17491832)
“It means there are times when a mere scientist has gone as far as he can. When he must pause and observe respectfully while something infinitely greater assumes control.”
—Kurt Neumann (19061958)
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)