Floral Transition
The transition from the vegetative phase to a reproductive phase involves a dramatic change in the plant’s vital cycle, perhaps the most important one, as the process must be carried out correctly in order to guarantee that the plant produces descendents. This transition is characterised by the induction and development of the meristem of the inflorescence, which will produce a collection of flowers or one flower, where only one is produced. This morphogenetic change contains both endogenous and exogenous elements: For example, in order for the change to be initiated the plant must have a certain number of leaves and contain a certain level of total biomass. Certain environmental conditions are also required such as a characteristic photoperiod. Plant hormones play an important part in the process, with the gibberellins having a particularly important role.
There are many signals that regulate the molecular biology of the process. However, it is worth noting the role of the following three genes in Arabidopsis thaliana: FLOWERING LOCUS T (FT), LEAFY (LFY), SUPPRESOR OF OVEREXPRESSION OF CONSTANS1 (SOC1, also called AGAMOUS-LIKE20). These genes possess both common and independent functions in floral transition. SOC1 is a MADS-box-type gene, which integrates responses to photoperiod, vernalization and gibberellins.
Read more about this topic: ABC Model Of Flower Development
Famous quotes containing the word transition:
“The most remarkable aspect of the transition we are living through is not so much the passage from want to affluence as the passage from labor to leisure.... Leisure contains the future, it is the new horizon.... The prospect then is one of unremitting labor to bequeath to future generations a chance of founding a society of leisure that will overcome the demands and compulsions of productive labor so that time may be devoted to creative activities or simply to pleasure and happiness.”
—Henri Lefebvre (b. 1901)