3 21 Polytope - 321 Polytope

321 Polytope

This polytope, along with the 7-simplex, can tessellate 7-dimensional space, represented by 331 and Coxeter-Dynkin diagram: .

321 polytope
Type Uniform 7-polytope
Family k21 polytope
Schläfli symbol {3,3,3,32,1}
Coxeter symbol 321
Coxeter-Dynkin diagram
6-faces 702 total:
126 311
576 {35}
5-faces 6048:
4032 {34}
2016 {34}
4-faces 12096 {33}
Cells 10080 {3,3}
Faces 4032 {3}
Edges 756
Vertices 56
Vertex figure 221 polytope
Petrie polygon octadecagon
Coxeter group E7, order 2903040
Properties convex

In 7-dimensional geometry, the 321 is a uniform polytope. It has 56 vertices, and 702 facets: 126 311 and 576 6-simplex.

For visualization this 7-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 56 vertices within a 18-gonal regular polygon (called a Petrie polygon). Its 756 edges are drawn between 3 rings of 18 vertices, and 2 vertices in the center. Specific higher elements (faces, cells, etc.) can also be extracted and drawn on this projection.

The 1-skeleton of the 321 polytope is called a Gosset graph.

Read more about this topic:  3 21 Polytope