100,000-year Problem - Solutions To The Problem

Solutions To The Problem

As the 100,000-year periodicity only dominates the climate of the past million years, there is insufficient information to separate the component frequencies of eccentricity using spectral analysis, making the reliable detection of significant longer-term trends more difficult, although the spectral analysis of much longer palaeoclimate records, such as the Lisiecki and Raymo stack of marine cores and James Zachos' composite isotopic record, helps to put the last million years in longer term context. Hence there is still no sheer consensus on the mechanism responsible for the 100ka periodicity—but there are several popular contenders.

The mechanism may be internal to the Earth system. The Earth's climate system may have a natural resonance frequency of 100ka; that is to say, feedback processes within the climate automatically produce a 100ka effect, much as a bell naturally rings at a certain pitch. Opponents to this claim point out that the resonance would have to have developed 1 million years ago, as a 100ka periodicity was weak to non-existent for the preceding 2 million years. This is not infeasible—continental drift and sea floor spreading rate change have been postulated as possible causes of such a change. Free oscillations of components of the Earth system have been considered as a cause, but too few Earth systems have a thermal inertia on a thousand-year timescale for any long-term changes to accumulate.

Orbital inclination has a 100ka periodicity, while eccentricity's 95 and 125ka periods combine to give a 100ka effect. While it is possible that the less significant, and originally overlooked, inclination variability has a deep effect on climate, the eccentricity only modifies insolation by a small amount: 1–2% of the shift caused by the 21,000-year precession and 41,000-year obliquity cycles. Such a big impact would therefore be disproportionate in comparison to other cycles. One possible mechanism suggested to account for this was the passage of Earth through regions of cosmic dust. Our eccentric orbit would take us through dusty clouds in space, which would act to occlude some of the incoming radiation, shadowing the Earth. In such a scenario, the abundance of the isotope 3He, produced by solar rays splitting gases in the upper atmosphere, would be expected to decrease—and initial investigations did indeed find such a drop in 3He abundance. However, there is still the possibility that the 100ka eccentricity cycle acts as a "pacemaker" to the system, amplifying the effect of precession and obliquity cycles at key moments, pushing a system usually in an accumulatory state "over the brink" into a swift melting phase, by providing the lightest of taps. A similar suggestion holds the 21,636-year precession cycles solely responsible. Ice ages are characterized by the slow buildup of ice volume, followed by relatively swift melting phases. It is possible that ice built up over several precession cycles, only melting after four or five such cycles.

A mechanism that may account for periodic fluctuations in solar luminosity has also been proposed as an explanation. Diffusion waves occurring within the sun can be modeled in such a way that they explain the observed climatic shifts on earth. However, the He3 signal again appears to contradict this finding.

The Dole effect describes trends in δ18O arising from trends in the relative importance of land-dwelling and oceanic photosynthesizers. Such a variation is a plausible perpetrator of the phenomenon, but only really passes the buck: what changed the importances of land- and sea-based photosynthesis?

The recovery of higher-resolution ice cores spanning more of the past 1,000,000 years by the ongoing EPICA project may help to shed more light on the matter. A new, high-precision dating method developed by the team allows better correlation of the various factors involved and puts the ice core chronologies on a stronger temporal footing, endorsing the traditional Milankovitch hypothesis, that climate variations are controlled by insolation in the northern hemisphere. The new chronology is inconsistent with the "inclination" theory of the 100,000-year cycle. The establishment of leads and lags against different orbital forcing components with this method—which uses the direct insolation control over nitrogen-oxygen ratios in ice core bubbles—is in principle a great improvement in the temporal resolution of these records and another significant validation of the Milankovitch hypothesis.

Read more about this topic:  100,000-year Problem

Famous quotes containing the words solutions to the, solutions to, solutions and/or problem:

    Those great ideas which come to you in your sleep just before you awake in morning, those solutions to the world’s problems which, in the light of day, turn out to be duds of the puniest order, couldn’t they be put to some use, after all?
    Robert Benchley (1889–1945)

    Those great ideas which come to you in your sleep just before you awake in morning, those solutions to the world’s problems which, in the light of day, turn out to be duds of the puniest order, couldn’t they be put to some use, after all?
    Robert Benchley (1889–1945)

    Those great ideas which come to you in your sleep just before you awake in morning, those solutions to the world’s problems which, in the light of day, turn out to be duds of the puniest order, couldn’t they be put to some use, after all?
    Robert Benchley (1889–1945)

    The disesteem into which moralists have fallen is due at bottom to their failure to see that in an age like this one the function of the moralist is not to exhort men to be good but to elucidate what the good is. The problem of sanctions is secondary.
    Walter Lippmann (1889–1974)